Chemical Biology Metal Catalysis

Our Aims

Generation, training and transfer of knowledge

Development of creative and groundbreaking
research at the interface of Chemistry, Biology and Medicine.

Education of researchers in order they become
future leaders of academic or industrial projects.

Transferring of knowledge to Society in order
to propel economical and social progress

European Research Council Santiago de Compostela University Campus Vida CIQUS - Centro Singular de Investigación en Química Biológica y Materiales Moleculares
Latest News
Media Library

One of our last publications at ACIE is getting plenty of attention

09/29/2020
This VIP (Very Important Paper) at Angew. Chem. Int. Ed. shows a very complex chemical reaction run at the living cell for the very first time

This work, published by the beginning of July at Angew. Chem. Int. Ed. and authored by Joan Miguel, María Tomás and José Luis Mascareñas, has been considered as a Very Important Paper by the reviewers.


See some news at:


External link: https://onlinelibrary.wiley.com/toc/15213773/2020/59/40

Our last review at 'Chemical Society Reviews' is available as accepted manuscript

09/14/2020
So glad to share our revision article is available as Advance Article at Chem. Soc. Rev.

We are starting 2020-2021 academic course and we have good news... our revision publication at Chemical Society Revies journal, entitled "Catalytic addition of C–H bonds across C–C unsaturated systems promoted by iridium(i) and its group IX congeners" and authored by D. Fernández, J. L. Mascareñas and F. López is already on-line.

Abstract:  Transition metal-catalyzed hydrocarbonations of unsaturated substrates have emerged as powerful synthetic tools for increasing molecular complexity in an atom-economical manner. Although this field was traditionally dominated by low valent rhodium and ruthenium catalysts, in recent years, there have been many reports based on the use of iridium complexes. In many cases, these reactions have a different course from those of their rhodium homologs, and even allow performing otherwise inviable transformations. In this review we aim to provide an informative journey, from the early pioneering examples in the field, most of them based on other metals than iridium, to the most recent transformations catalyzed by designed Ir(I) complexes. The review is organized by the type of C–H bond that is activated (with C sp2, sp or sp3), as well as by the C–C unsaturated partner that is used as a hydrocarbonation partner (alkyne, allene or alkene). Importantly, we discuss the mechanistic foundations of the methods highlighting the differences from those previously proposed for processes catalyzed by related metals, particularly those of the same group (Co and Rh).



External link: https://pubs.rsc.org/en/content/articlelanding/2020/CS/D0CS00359J#!divAbstract

Our last paper at 'The Journal of Physical Chemistry Letters' is available as accepted manuscript

08/10/2020
Pleased to announce our most recent J. Phys. Chem. Lett. manuscript has been accepted, and it's already on-line

We are very happy to share here that our research article at J. Phys. Chem. Lett., entitled "Surface-enhanced Raman Scattering Detection of Nucleic Acids exhibiting Sterically Accessible Guanines using Ruthenium-polypyridyl Reagents" and authored by and M. Martínez-Calvo, L. Guerrini, J. Rodríguez, R. A. Álvarez-Puebla and J. L. Mascarenas, has been accepted and it's already available through the journal website.

Abstract: Here, we report the application of surface-enhanced Raman scattering (SERS) spectroscopy as a rapid and practical tool for assessing the formation of coordinative adducts between nucleic acid guanines and ruthenium polypyridyl reagents. The technology provides a practical approach for the wash-free and quick identification of nucleic acid structures exhibiting sterically accessible guanines. This is demonstrated for the detection of a quadruplex-forming sequence present in the promoter region of the c-myc oncogene, which exhibits a non-paired, reactive guanine at a flanking position of the G-quartets.




External link: https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.0c02148

Synthetic models in Chemical Biology

12/05/2020
Workshop on Nanomedicine 2012. Prof. Mascareñas, ERC - Advanced Grant METBIOCAT, explains his research lines in the chemical biology field.
DNA is the key macromolecule used by nature to store the genetic information, therefore containing all the instructions that control the day-to-day function of cells. As such, it has been a traditional target for the development of different type of drugs, particularly anticancer agents. These drugs include alkylating agents, like cis-platinum and derivatives, and non-covalent binders like the anthracyclines, which interact to DNA by intercalation between base pairs. There are other types of cytotoxic non-covalent DNA binders, like distamycin or propamidine, which interact to DNA by insertion in the minor groove.

We have been interested in this latter type of molecules, because they are sequence selective and therefore provide for molecular engineering of site-specific DNA-promoted processes. In particular, we have designed and synthesized a number of variants of propamidine that work as sequence specific DNA optical sensors, or as light-activated prodrugs.

Some of the knowledge acquired in the studies of light-promoted processes has been extended to area of DNA-protein interactions. In particular, we have developed a chemical approach to control the DNA interaction of synthetic mimics of transcription factors, and expect that the tactic can be used in the future to regulate processes of gene expression.
Part of our work in this area is also focused to the construction of optical sensors that can detect minute amounts of transcription factors considered as oncogenic biomarkers, like the bZIP protein Jun.

Meet our team

José Luis Mascareñas, PhD leads this team of researchers. Find out more about him and the rest of the team in our Group members section.

Group Members

Join Us

We are always looking forward to welcoming exceptional candidates into our research Group. Please visit our Opportunities section or send us your cv.

Opportunities

Living and working in
Santiago de Compostela

Are you new to the city and its University?
We have gathered some facts and figures you may find interesting.

15ºC

Annual mean temperature. The humid oceanic climate guarantees mild weather throughout the year.

33,000

Students attend the University. With the city population around 100,000.

500

Year old University. Currently imparting more than 60 degrees.

Connected

Santiago is well connected, having its own international airport, train station, etc.

Heritage

Amongst many awards, Santiago was declared World Heritage City by UNESCO in 1985.

Galicia

Santiago de Compostela is the capital of Galicia de most Nortwestern region of Spain.

Transport

Public transport is available in order to get around the city, which is also conveniently located to visit other sites in Galicia.

Language

Spanish and Galician are the two official languages of Galicia. Your work will be carried out in English.

Resources

Official websites:
University of Santiago
Santiago Tourism
CIQUS